4,779 research outputs found

    Security Attributes Based Digital Rights Management

    Get PDF
    Most real-life systems delegate responsibilities to different authorities. We apply this model to a digital rights management system, to achieve flexible security. In our model a hierarchy of authorities issues certificates that are linked by cryptographic means. This linkage establishes a chain of control, identity-attribute-rights, and allows flexible rights control over content. Typical security objectives, such as identification, authentication, authorization and access control can be realised. Content keys are personalised to detect illegal super distribution. We describe a working prototype, which we develop using standard techniques, such as standard certificates, XML and Java. We present experimental results to evaluate the scalability of the system. A formal analysis demonstrates that our design is able to detect a form of illegal super distribution

    A Chandra X-ray study of the young star cluster NGC 6231: low-mass population and initial mass function

    Get PDF
    NGC6231 is a massive young star cluster, near the center of the Sco OB1 association. While its OB members are well studied, its low-mass population has received little attention. We present high-spatial resolution Chandra ACIS-I X-ray data, where we detect 1613 point X-ray sources. Our main aim is to clarify global properties of NGC6231 down to low masses through a detailed membership assessment, and to study the cluster stars' spatial distribution, the origin of their X-ray emission, the cluster age and formation history, and initial mass function. We use X-ray data, complemented by optical/IR data, to establish cluster membership. The spatial distribution of different stellar subgroups also provides highly significant constraints on cluster membership, as does the distribution of X-ray hardness. We perform spectral modeling of group-stacked X-ray source spectra. We find a large cluster population down to ~0.3 Msun (complete to ~1 Msun), with minimal non-member contamination, with a definite age spread (1-8 Myrs) for the low-mass PMS stars. We argue that low-mass cluster stars also constitute the majority of the few hundreds unidentified X-ray sources. We find mass segregation for the most massive stars. The fraction of circumstellar-disk bearing members is found to be ~5%. Photoevaporation of disks under the action of massive stars is suggested by the spatial distribution of the IR-excess stars. We also find strong Halpha emission in 9% of cluster PMS stars. The dependence of X-ray properties on mass, stellar structure, and age agrees with extrapolations based on other young clusters. The cluster initial mass function, computed over ~2 dex in mass, has a slope Gamma~-1.14. The total mass of cluster members above 1 Msun is 2280 Msun, and the inferred total mass is 4380 Msun. We also study the peculiar, hard X-ray spectrum of the Wolf-Rayet star WR79.Comment: 25 pages, 36 figures, accepted for publication on Astronomy and Astrophysic

    The stellar population of Sco OB2 revealed by Gaia DR2 data

    Get PDF
    Sco OB2 is the nearest OB association, extending over approximately 2000 sq.deg. on the sky. Only its brightest members are already known (from Hipparcos) across its entire size, while studies of its lower-mass population refer only to small portions of its extent. In this work we exploit the capabilities of Gaia DR2 measurements to search for Sco OB2 members across its entire size and down to the lowest stellar masses. We use both Gaia astrometric and photometric data to select association members, using minimal assumptions derived mostly from the Hipparcos studies. Gaia resolves small details in both the kinematics of individual Sco OB2 subgroups and their distances from the Sun. We develop methods to explore the 3D kinematics of stellar populations covering large sky areas. We find ~11000 pre-main sequence (PMS) Sco OB2 members (with <3% contamination), plus ~3600 MS candidate members with a larger (10-30%) field-star contamination. A higher-confidence subsample of ~9200 PMS (and ~1340 MS) members is also selected (<1% contamination for the PMS), affected however by larger (~15%) incompleteness. We classify separately stars in compact and diffuse populations. Most members belong to a few kinematically distinct diffuse populations, whose ensemble outlines the association shape. Upper Sco is the densest part of Sco OB2, with a complex spatial and kinematical structure, and no global pattern of motion. Other dense subclusters are found in Upper Centaurus-Lupus and in Lower Centaurus-Crux. Most clustered stars appear to be younger than the diffuse PMS population, suggesting star formation in small groups which rapidly disperse and dilute, while keeping memory of their original kinematics. We also find that the open cluster IC 2602 has a similar dynamics to Sco OB2, and its PMS members are evaporating and forming a ~10 deg halo around its double-peaked core.Comment: 27 pages, 37 figures. Accepted for publication in Astronomy and Astrophysic

    Correlation between the spatial distribution of circumstellar disks and massive stars in the young open cluster NGC 6611. II: Cluster members selected with Spitzer/IRAC

    Full text link
    Context: the observations of the proplyds in the Orion Nebula Cluster, showing clear evidence of ongoing photoevaporation, have provided a clear proof about the role of the externally induced photoevaporation in the evolution of circumstellar disks. NGC 6611 is an open cluster suitable to study disk photoevaporation, thanks to its large population of massive members and of stars with disk. In a previous work, we obtained evidence of the influence of the strong UV field generated by the massive cluster members on the evolution of disks around low-mass Pre-Main Sequence members. That work was based on a multi-band BVIJHK and X-ray catalog purposely compiled to select the cluster members with and without disk. Aims: in this paper we complete the list of candidate cluster members, using data at longer wavelengths obtained with Spitzer/IRAC, and we revisit the issue of the effects of UV radiation on the evolution of disks in NGC 6611. Methods: we select the candidate members with disks of NGC 6611, in a field of view of 33'x34' centered on the cluster, using IRAC color-color diagrams and suitable reddening-free color indices. Besides, using the X-ray data to select Class III cluster members, we estimate the disks frequency vs. the intensity of the incident radiation emitted by massive members. Results: we identify 458 candidate members with circumstellar disks, among which 146 had not been revealed in our previous work. Comparing of the various color indices we used to select the cluster members with disk, we claim that they detect the excesses due to the emission of the same physical region of the disk: the inner rim at the dust sublimation radius. Our new results confirm that UV radiation from massive stars affects the evolution of nearby circumstellar disks.Comment: Accepted for publication at Astronomy & Astrophysic

    Low mass star formation and subclustering in the HII regions RCW 32, 33 and 27 of the Vela Molecular Ridge. A photometric diagnostics to identify M-type stars

    Get PDF
    Most stars born in clusters and recent results suggest that star formation (SF) preferentially occurs in subclusters. Studying the morphology and SF history of young clusters is crucial to understanding early SF. We identify the embedded clusters of young stellar objects (YSOs) down to M stars, in the HII regions RCW33, RCW32 and RCW27 of the Vela Molecular Ridge. Our aim is to characterise their properties, such as morphology and extent of the clusters in the three HII regions, derive stellar ages and the connection of the SF history with the environment. Through public photometric surveys such as Gaia, VPHAS, 2MASS and Spitzer/GLIMPSE, we identify YSOs with IR, Halpha and UV excesses, as signature of circumstellar disks and accretion. In addition, we implement a method to distinguish M dwarfs and giants, by comparing the reddening derived in several optical/IR color-color diagrams, assuming suitable theoretical models. Since this diagnostic is sensitive to stellar gravity, the procedure allows us to identify pre-main sequence stars. We find a large population of YSOs showing signatures of circumstellar disks with or without accretion. In addition, with the new technique of M-type star selection, we find a rich population of young M stars with a spatial distribution strongly correlated to the more massive population. We find evidence of three young clusters, with different morphology. In addition, we identify field stars falling in the same region, by securely classifying them as giants and foreground MS stars. We identify the embedded population of YSOs, down to about 0.1 Msun, associated with the HII regions RCW33, RCW32 and RCW27 and the clusters Vela T2, Cr197 and Vela T1, respectively, showing very different morphologies. Our results suggest a decreasing SF rate in Vela T2 and triggered SF in Cr197 and Vela T1.Comment: Accepted for publication in A&A; 20 pages, 22 figures, 6 table

    Towards a Standard for Human Interaction with Connected Autonomous Vehicles

    Get PDF

    Guest editorial : location-centric privacy in mobile services

    Get PDF
    • …
    corecore